1,977 research outputs found

    Wood-inhabiting macrofungal assemblages in 43-year-old regenerating wet Eucalyptus Obliqua L'Her.Forest

    Get PDF
    This study focuses on the diversity and ecology of wood-inhabiting macrofungal species assemblages in a regenerating tall, wet, native Eucalyptus obliqua forest in southeast Tasmania, 43 years after natural and anthropogenic disturbances. Two plots subjected to "clearfell, burn and sow" silviculture were compared with two other nearby plots that had experienced wildfire. A total of 90 species was identified from 619 macro fungal records during six fortnightly visits between May and July 2010. The plots with abundant live Pomaderris ape tala trees in the understorey (i.e., those at Edwards Rd) had markedly different macrofungal assemblages from those with no or with sparse Pomaderris apetala (i.e., at Hartz Rd). This study provided evidence that a 43-year-old regenerating forest maintains a core of common wood-inhabiting macrofungal species irrespective of type of disturbance. Furthermore, species most frequently observed in older forests in Tasmania can also occur in younger managed forests if biological legacies such as large diameter wood, well-decayed wood, large living trees and a diversity of tree species remain after silvicultural treatment

    Long-term results of cyclosporine-steroid therapy in 131 non-matched cadaveric renal transplants.

    Get PDF
    One-hundred-and-twenty-eight recipients of 131 consecutive, non-matched cadaver renal allografts were treated with cyclosporine and steroids. They have been followed for 4 to 6 yr. Cumulative patient survival at 1-yr was 92.2% and at 6yr it is 77.8%. Cumulative graft survival at 1-yr was 79.4% and at 6 yr it is 50.0%. After the high-risk 1st yr, the rate of graft loss was even and similar to that reported after the 1st yr for grafts treated with azathioprine and steroids. This indicates that cyclosporine nephrotoxicity has not had an obvious adverse effect on the survival of chronically functioning grafts. The results were better with primary grafting versus retransplantation, but were not significantly influenced by age, diabetes mellitus, or a delayed switch in patients from cyclosporine to azathioprine. We have concluded that cyclosporine-steroid therapy is safe and effective for long-term use after cadaveric renal transplantation

    Non-inferiority trials: are they inferior? A systematic review of reporting in major medical journals.

    Get PDF
    OBJECTIVE: To assess the adequacy of reporting of non-inferiority trials alongside the consistency and utility of current recommended analyses and guidelines. DESIGN: Review of randomised clinical trials that used a non-inferiority design published between January 2010 and May 2015 in medical journals that had an impact factor >10 (JAMA Internal Medicine, Archives Internal Medicine, PLOS Medicine, Annals of Internal Medicine, BMJ, JAMA, Lancet and New England Journal of Medicine). DATA SOURCES: Ovid (MEDLINE). METHODS: We searched for non-inferiority trials and assessed the following: choice of non-inferiority margin and justification of margin; power and significance level for sample size; patient population used and how this was defined; any missing data methods used and assumptions declared and any sensitivity analyses used. RESULTS: A total of 168 trial publications were included. Most trials concluded non-inferiority (132; 79%). The non-inferiority margin was reported for 98% (164), but less than half reported any justification for the margin (77; 46%). While most chose two different analyses (91; 54%) the most common being intention-to-treat (ITT) or modified ITT and per-protocol, a large number of articles only chose to conduct and report one analysis (65; 39%), most commonly the ITT analysis. There was lack of clarity or inconsistency between the type I error rate and corresponding CIs for 73 (43%) articles. Missing data were rarely considered with (99; 59%) not declaring whether imputation techniques were used. CONCLUSIONS: Reporting and conduct of non-inferiority trials is inconsistent and does not follow the recommendations in available statistical guidelines, which are not wholly consistent themselves. Authors should clearly describe the methods used and provide clear descriptions of and justifications for their design and primary analysis. Failure to do this risks misleading conclusions being drawn, with consequent effects on clinical practice

    Rethinking non-inferiority: a practical trial design for optimising treatment duration.

    Get PDF
    Background Trials to identify the minimal effective treatment duration are needed in different therapeutic areas, including bacterial infections, tuberculosis and hepatitis C. However, standard non-inferiority designs have several limitations, including arbitrariness of non-inferiority margins, choice of research arms and very large sample sizes. Methods We recast the problem of finding an appropriate non-inferior treatment duration in terms of modelling the entire duration-response curve within a pre-specified range. We propose a multi-arm randomised trial design, allocating patients to different treatment durations. We use fractional polynomials and spline-based methods to flexibly model the duration-response curve. We call this a 'Durations design'. We compare different methods in terms of a scaled version of the area between true and estimated prediction curves. We evaluate sensitivity to key design parameters, including sample size, number and position of arms. Results A total sample size of ~ 500 patients divided into a moderate number of equidistant arms (5-7) is sufficient to estimate the duration-response curve within a 5% error margin in 95% of the simulations. Fractional polynomials provide similar or better results than spline-based methods in most scenarios. Conclusion Our proposed practical randomised trial 'Durations design' shows promising performance in the estimation of the duration-response curve; subject to a pending careful investigation of its inferential properties, it provides a potential alternative to standard non-inferiority designs, avoiding many of their limitations, and yet being fairly robust to different possible duration-response curves. The trial outcome is the whole duration-response curve, which may be used by clinicians and policymakers to make informed decisions, facilitating a move away from a forced binary hypothesis testing paradigm

    Dirac Gauginos, Negative Supertraces and Gauge Mediation

    Full text link
    In an attempt to maximize General Gauge Mediated parameter space, I propose simple models in which gauginos and scalars are generated from disconnected mechanisms. In my models Dirac gauginos are generated through the supersoft mechanism, while independent R-symmetric scalar masses are generated through operators involving non-zero messenger supertrace. I propose several new methods for generating negative messenger supertraces which result in viable positive mass squareds for MSSM scalars. The resultant spectra are novel, compressed and may contain light fermionic SM adjoint fields.Comment: 16 pages 3 figure

    Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development

    Get PDF
    Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.The author(s) gratefully acknowledge receipt of the following financial support. Medical Research Council (Grant nos. G0600986 ID79068 and G1002277 ID98489) and National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authors’ support: EPT—the Swedish Society of Medicine (Grant no. SLS-587221) and the Swedish Brain Foundation; KLHC—the National Institute for Health Research Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); PJH—the National Institute for Health Research Professorship, the Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship and the National Institute for Health Research Biomedical Research Centre, Cambridge; AH—the Medical Research Council/Royal College of Surgeons of England Clinical Research Training Fellowship (Grant no. G0802251)

    Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.

    Get PDF
    In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI

    Investigating the missing data mechanism in quality of life outcomes: a comparison of approaches

    Get PDF
    Background: Missing data is classified as missing completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR). Knowing the mechanism is useful in identifying the most appropriate analysis. The first aim was to compare different methods for identifying this missing data mechanism to determine if they gave consistent conclusions. Secondly, to investigate whether the reminder-response data can be utilised to help identify the missing data mechanism. Methods: Five clinical trial datasets that employed a reminder system at follow-up were used. Some quality of life questionnaires were initially missing, but later recovered through reminders. Four methods of determining the missing data mechanism were applied. Two response data scenarios were considered. Firstly, immediate data only; secondly, all observed responses (including reminder-response). Results: In three of five trials the hypothesis tests found evidence against the MCAR assumption. Logistic regression suggested MAR, but was able to use the reminder-collected data to highlight potential MNAR data in two trials. Conclusion: The four methods were consistent in determining the missingness mechanism. One hypothesis test was preferred as it is applicable with intermittent missingness. Some inconsistencies between the two data scenarios were found. Ignoring the reminder data could potentially give a distorted view of the missingness mechanism. Utilising reminder data allowed the possibility of MNAR to be considered.The Chief Scientist Office of the Scottish Government Health Directorate. Research Training Fellowship (CZF/1/31

    Delineating Astrocytic Cytokine Responses in a Human Stem Cell Model of Neural Trauma

    Get PDF
    Neuroinflammation has been shown to mediate the pathophysiological response following traumatic brain injury (TBI). Accumulating evidence implicates astrocytes as key immune cells within the central nervous system (CNS), displaying both pro- and anti-inflammatory properties. The aim of this study was to investigate how in vitro human astrocyte cultures respond to cytokines across a concentration range that approximates the aftermath of human TBI. To this end, enriched cultures of human induced pluripotent stem cell (iPSC)-derived astrocytes were exposed to interleukin-1β (IL-1β) (1–10,000 pg/mL), IL-4 (1–10,000 pg/mL), IL-6 (100–1,000,000 pg/mL), IL-10 (1–10,000 pg/mL) and tumor necrosis factor (TNF)-α (1–10,000 pg/mL). After 1, 24, 48 and 72 h, cultures were fixed and immunolabeled, and the secretome/supernatant was analyzed at 24, 48, and 72 h using a human cytokine/chemokine 39-plex Luminex assay. Data were compared to previous in vitro studies of neuronal cultures and clinical TBI studies. The secretome revealed concentration-, time- and/or both concentration- and time-dependent production of downstream cytokines (29, 21, and 17 cytokines, respectively, p<0.05). IL-1β exposure generated the most profound downstream response (27 cytokines), IL-6 and TNF had intermediate responses (13 and 11 cytokines, respectively), whereas IL-4 and IL-10 only led to weak responses over time or in escalating concentration (8 and 8 cytokines, respectively). Notably, expression of IL-1β, IL-6, and TNF cytokine receptor mRNA was higher in astrocyte cultures than in neuronal cultures. Several secreted cytokines had temporal trajectories, which corresponded to those seen in the aftermath of human TBI. In summary, iPSC-derived astrocyte cultures exposed to cytokine concentrations reflecting those in TBI generated an increased downstream cytokine production, particularly IL-1β. Although more work is needed to better understand how different cells in the CNS respond to the neuroinflammatory milieu after TBI, our data shows that iPSC-derived astrocytes represent a tractable model to study cytokine stimulation in a cell type-specific manner
    corecore